IDTF (Intermediate Data Text File) Format Description
Version 100

8 March 2005

This IDTF (Intermediate Data Text File) Format Description document as well as the software described
in it are furnished under license by Intel Corporation and may only be used or copied in accordance with
the terms of the license. The information in this manual is furnished for informational use only, is subject
to change without notice, and should not be construed as a commitment by Intel Corporation. Intel
Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express written consent of Intel
Corporation.

© 2003 - 2006 Intel Corporation. All rights reserved.

* Other names and brands may be claimed as the property of others.

Page 2

Table of Contents

S F Y (ol D= L= T Y 1= PP PPPTP PRI 4
[(SIS U o3 (U< 4
(V1S = T I F= v 4
[T (ST [<T=To 1= T 5
o= LS D= = 5
L TSR R LY (=T (=T (o = 5
N[0T [7
LT (01U o PP RPPPPRPO 8
[T | o | T PP P R OUPRPPP 8
ALY 8
o o L= TR 9

[ST 01U (oL = 9
[T | LB =TT T | (o7 T SRR 10
VIBW RESOUICE.ciieetie e ee et e ettt e e e e e et ea s e e e e e s eea b eeessee s aba s eeess s e s e b b eeeesssssbaba s eesseesbnsbarannss 10

[oTo (S I R =TT o TU] (o] < 11
TS o N 12

[T TSI Y= N 14
o 11) AT AN 17

Lit TEXIUIE SNAUET RESOUICE.....cueiiiite ettt ettt e e et e e ettt e e e et e et et eeesata e asaa s e satsesesaseessnnrerees 19
IMAEEIIAL RESOUICE.cieeeeeeeet ettt ettt ettt e ettt e et et e e et et e e e e aaa e e s eaa s e s et s sesaaa e sesaasesebaneeesannees 21
I T (ST =TT 0 10 | (o] = 21
/(o]0 o) W R ST o 10 [(o= 22
Y00 11 1T 6T 23
Y g =T T To 1Y oo 11T Co PP PPPN 23

F A Q1T a =N To] TV (oo 111 24
20T TSI AV =TT | oL 1Y o o 1T SRR 25

(@ IO 1B 1Y [To 11 T=T TN 25
S0 oo [AVZ LY o] 1Yo 1o L1 = 26
1117 1 1Y, o Yo 11 = SRRt 26

Page 3

Basic Data Types

Following table contains description of all primitive data types, which can be used for IDTF format.

BOOL Boolean value that’s either “TRUE” or “FALSE”

FLOAT Float number with decimal delimiter (point)

HEX Unsigned hexadecimal number

INT Unsigned integer number

INT2 2 unsigned integer numbers delimited by single space

INT3 3 unsigned integer numbers delimited by single space

COLOR3 3 float numbers delimited by single space in following order - R G B

COLOR4 4 float numbers delimited by single space in following order-R G B A

POINT3 3 float numbers divided by single space in following order - XY Z

VECTOR4 4 float numbers delimited by single space in following order - XY Z W

QUAT Quaternion: 4 floats representing rotation

STRING Maximum length of string is 256 chars with terminating null on one line. List of
strings can be located at one line or different ones if length of string list is more
than 256 chars

File Structure

The IDTF file contains text blocks which define different scene objects.

<FILE_HEADER>
<SCENE_DATA>
<FILE_REFERENCE>
<NODES>
<NODE_RESOURCES>
<SHADER_RESOURCES>
<MOTION_RESOURCES>
<MODIFIERS>

File header block represents information about format name and version. It should be only one header
block.

Scene data block provides information which is common for entire scene. It should be only one scene
data block.

Node blocks represent hierarchical scene graph. Type of nodes are: Group, Light, View and Model.
Node resources blocks provide resource data for nodes in a scene. Node resource types are: Light, View
and Model.

Shader resource blocks represent shading resources which are applicable for models in a scene.

Motion resources block represents motions used by nodes.

Modifier blocks represent information about modifiers which can be added to modifier chain.

IDTF files should contain blocks in the order defined above.
Meta-Data

<BLOCK_TYPE>: META_DATA

There are a number of types of blocks defined in this format specification:
SCENE - defines common scene properties

NODE - defines node in the scene

RESOURCE - defines resource

MODIFIER - defines modifier

All these blocks can have meta-data. In case of resource block each resource in the resource list can
have its own metadata.

The Meta-Data block contains a sequence of Key/Value pairs.

Description of <META_DATA> block:

Page 4

META_DATA {
META DATA_COUNT <INT>: number_of meta data
META_DATA 0 {
META_DATA ATTRIBUTE <STRING>: “BINARY” or ‘“STRING”
META_DATA_KEY <STRING>
META_DATA_VALUE <STRING>

}

META_DATA number_of meta data-1 {
META_DATA_ATTRIBUTE <STRING>: “BINARY” or “STRING”
META_DATA_KEY <STRING>
META_DATA VALUE <STRING>

}

METADATA_VALUE example if METADATA_TYPE is “STRING” — “Some metadata value”.

METADATA_VALUE example if METADATA_TYPE is “BINARY” — “2C AD 02 74 2E 00 00 EC 00”.

File Header

File header defines file format extension in the form of string (“IDTF”) and file version in the form of
integer number.
Example:

FILE_FORMAT “IDTF”
FILE_VERSION 100

Scene Data

At the beginning of file and after header there is some common scene information defined in SCENE

block. It contains meta-data for entire scene (optional).
Scene block description:
SCENE {
<META_DATA>
}

This block is optional.
Look at the meta-data description in the meta-data section.

File Reference

A File Reference block contains information for finding a single file that is associated with this file and is
loaded with it. Multiple locations for the file may be specified. The File Reference block may also contain

filters that load a portion of the file based on name, object type, or position.

FILE_REFERENCE {
SCOPE_NAME <STRING>
URL_COUNT <INT>
URL_LIST {

URL O <STRING>

URL url_count-1 <STRING>
¥
FILTER_COUNT <INT>
FILTER_LIST {
FILTER O {
<FILTER_DATA>
}

FILTER Ffilter_count-1 {
<FILTER_DATA>
}

Page 5

}
NAME_COLLISION_POLICY <STRING>
WORLD_ALIAS_NAME <STRING>

}

SCOPE_NAME
Used to identify the external file reference. Depending on the collision policy, the scope hame may be
used to modify the names of objects in the referenced file.

URL_LIST

List of Strings identifying the external file locations. Multiple locations can be specified for the external
file. The player shall load the file from one of the locations. HTTP and FTP protocols will be recognized
with absolute and relative addressing.

FILTER_COUNT

Number of filters to apply when loading the referenced file. If the filter count is zero, then all objects from
the referenced file are loaded. If the filter count is greater than zero, then objects from the referenced file
shall only be loaded if they match the specification of at least one of the filters. A modifier object shall be
loaded if and only if the object it modifies is loaded.

FILTER
There are two types of filters.

<FILTER_DATA> block depends on the type of filter.

First is object name filter:
The <FILTER_DATA-> for object name filter is:

TYPE “NAME”
OBJECT_NAME <STRING>

String used to filter objects by name. An object shall be loaded if its name matches Object Name Filter.

May contain the wildcard characters question mark ‘?’ and asterisk **’. The question mark wildcard
matches any one character at that position. The asterisk wildcard matches any zero or more characters
at that position.

Second is object type filter:
The <FILTER_DATA-> for object type filter is:

TYPE “TYPE”
OBJECT_TYPE <HEX>

Used to filter objects by type. An object shall be loaded if the block type of its declaration block matches
Object Type Filter.

NAME_COLLISION_POLICY

A name collision occurs when the file being loaded contains an object with the same name as an object
that already exists either loaded previously or created programmatically. Name Collision Policy indicates
how name collisions are to be handled. Valid values are:

“REPLACE" — Replace existing object with the new object from external file.

“DISCARD™ — Discard the new object from external file.

“PREPEND_ALL" — Prepend scope name to object name for all objects from the external file
“PREPENDCOLLIDED” — Prepend scope name to new object name if there is a collision.
“POSTMANGLE” — Append instance number to new object name if there is a collision.

Prepending the scope name avoids collisions but does not prevent them in all cases. The new name with
prepended scope name may still collide with an existing object. In this situation, the new object from the
external file will replace that existing object.

When appending instance numbers, instance numbers shall be chosen to avoid collision with previously
loaded objects.

Page 6

WORLD_ALIAS_NAME
The world is the default node. The name of the default node is the empty string. Any references to the
default node in the external file are replaced with a reference to the node named by World Alias Name.

Nodes

Nodes are the entities that populate the scene graph. Each node type contains a name, the number of
parents it has, the name of each parent, and a transform for each parent specifying the position and
orientation of the node relative to that parent. Nodes (except for the group node, see below) also have an
associated node resource that is specified by ID. Also nodes can have an associated meta-data. To allow
data sharing, multiple nodes may use the same resource.

Common node block description:

NODE <NODE_TYPE> {
NODE_NAME <STRING>
PARENT_LIST {

PARENT _COUNT <INT>:n

PARENT O {
PARENT _NAME “STRING”
PARENT_TM {
<TM_DATA>
}
3
PARENT n-1 {
PARENT _NAME “STRING”
PARENT_TM {
<TM_DATA>
3
3

}
RESOURCE_NAME <STRING>
<META_DATA>

by
Description of node block’s fields:

<NODE_TYPE>: the string without tabs and spaces, which allows to unique identify the type of node.
A node type can be:

MODEL (can be mesh, line set and point set)
VIEW
LIGHT
GROUP
<NODE_NAME>: node’s name (e.g. “Sphere01");

<PARENT _LIST>: list of names of node’s parents and TM relative to parents;

<TM_DATA>: transform matrix for each parent specifying the position and orientation of the node relative
to that parent

™ {
<TM_COLUMNO>
<TM_COLUMN1>
<TM_COLUMN2>
<TM_COLUMN3>
3

<TM_COLUMN<N>>: Nth column of node’s TM. It must be 4 floats. TM has 4 rows and 4 columns of
floats. (Node’s TM must be local object's TM in parent space);

Page 7

<RESOURCE_NAME>: allows to find node type’s dependent data in the node resource list. The name
here should exactly match the name of existing resource.

<METADATA>: meta-data specific to this node (optional).

Look at the specific node resource description below in the resource section.
Look at the meta-data description in the meta-data section.

Group
<NODE_TYPE>: GROUP

NODE ““GROUP™ {
NODE_NAME <STRING>

<PARENT_DATA>: see the common node block description
<META_DATA>

}

There is no need for node resource for group node.

Light
<NODE_TYPE>: LIGHT

NODE “LIGHT” {
NODE_NAME <STRING>

<PARENT_DATA>: see the common node block description
RESOURCE_NAME <STRING>
<META_DATA>

}

View
<NODE_TYPE>: VIEW

NODE “VIEW” {
NODE_NAME <STRING>

<PARENT_DATA>: see the common node block description
RESOURCE_NAME <STRING>
VIEW_DATA {

<VIEW_DATA>

}
<META_DATA>
}

Description of <VIEW_DATA>:

VIEW_ATTRIBUTE_SCREEN_UNIT <STRING>: “PIXEL” OR “PERCENT"

VIEW_TYPE <STRING>: (optional) “PERSPECTIVE” (default) OR “ORTHO”

VIEW_NEAR_CLIP <FLOAT>: near clipping distance (optional);

VIEW_FAR_CLIP <FLOAT>: far clipping distance (optional);

VIEW_PROJECTION <FLOAT>: field of view of the virtual camera in degrees for perspective or height of
the orthographic view for orthographic;

<VIEW_PORT_DATA> (optional)

<BACKDROP DATA> (optional)

<OVERLAY_DATA> (optional)

Description of <VIEW_PORT_DATA>:

VIEW_PORT_WIDTH: width of the window in which the view will render

VIEW_PORT_HEIGHT: height of the window in which the view will render

VIEW_PORT_H_POSITION: horizontal position on the screen of the window in which the view will render
VIEW_PORT_V_POSITION: vertical position on the screen of the window in which the view will render

Page 8

Description of backdrops and overlays:

BACKDROP_COUNT
BACKDROP_LIST {
BACKDROP 0 {
<VIEW_TEXTURE_DATA>
3

BACKDROP number_of backdrops-1 {
<VIEW_TEXTURE_DATA>
}

}

OVERLAY_COUNT
OVERLAY_LIST {
OVERLAY 0 {
<VIEW_TEXTURE_DATA>
}

OVERLAY number_of _overlays-1 {
<VIEW_TEXTURE_DATA>
}

}

Description of <VIEW_TEXTURE_DATA>:

TEXTURE_NAME <STRING>: name of the texture resource to use with backdrop or overlay
TEXTURE_BLEND <FLOAT>: blend factor used with the backdrop’s or overlay’s texture
ROTATION <FLOAT>: texture used with the backdrop or overlay is rotated

LOCATION_X <FLOAT>: backdrop’s or overlay’s horizontal location

LOCATION_Y <FLOAT>: backdrop’s or overlay’s vertical location

REG_POINT_X <INT>: horizontal registration point

REG_POINT_Y <INT>: registration point

SCALE_X <FLOAT>: scale factor applied to the backdrop or overlay horizontally

SCALE_Y <FLOAT>: scale factor applied to the backdrop or overlay vertically

Model
<NODE_TYPE>: MODEL

NODE ““MODEL” {
NODE_NAME <STRING>
<PARENT_DATA>: see the common node block description
RESOURCE_NAME <STRING>
MODEL_VISIBILITY <STRING>
<META_DATA>

}

Model Visibility is used to indicate whether the front facing or back facing surface should be drawn.
Possible values:

“NONE" — no polygons are drawn and the model is invisible.

“FRONT” — only polygons on the outer surface of the model are drawn, so that, if the camera were inside
the model, the model wouldn't be seen.

“BACK” — only polygons on the inside of the object are drawn, so that if the camera were outside the
model, the model wouldn't be seen.

“BOTH” — all polygons are drawn and the model is visible regardless of orientation.

Resources

Resource lists are used for resource sharing.

Page 9

Common resource list block format:

RESOURCE_LIST <RESOURCE_TYPE> {
RESOURCE_COUNT <INT>: number_of _resources in the list
RESOURCE 0 {
RESOURCE_NAME <STRING>
<RESOURCE_DATA>: resource specific data
<META_DATA>

}

RESOURCE number_of_resources-1 {
RESOURCE_NAME <STRING>
<RESOURCE_DATA>: resource specific data
<META_DATA>

}

<RESOURCE_TYPE>: the string which allows to identify type of resource data.
Possible RESOURCE_LIST types:

VIEW
LIGHT
MODEL
SHADER
MOTION

IDTF file can have only one list of each resource list type. They should be located after node’s blocks.

Light Resource
<RESOURCE_TYPE>: LIGHT

Description of <RESOURCE_DATA> for Light:

LIGHT_TYPE <STRING>: light type;

LIGHT_COLOR <COLOR4>: diffuse color;

LIGHT_ATTENUATION <POINT3>: attenuation (constant, linear, quadratic factors);
LIGHT_SPOT_ANGLE <FLOAT>: spot angle, used only for spot light;

LIGHT _INTENSITY <FLOAT>: intensity

Possible values of LIGHT_TYPE:

“AMBIENT” - Light provides uniform non-directional light to the scene.
"DIRECTIONAL” - Light provides uniform directional light to the scene.
"POINT” - Light is emitted from a specific point in the scene.

"SPOT” - Like point light, but constrained to specific directions.

View Resource
<RESOURCE_TYPE>: VIEW

Description of <RESOURCE_DATA> for View:

VIEW_PASS COUNT <INT>: the number of passes that are used when rendering this view
VIEW_ROOT_NODE_LIST {

ROOT_NODE 0 {

ROOT_NODE_NAME <STRING>: the name of a node the view will render

}

ROOT_NODE n-1 {
ROOT_NODE_NAME <STRING>
}

Page 10

}

Model Resource
<RESOURCE_TYPE>: MODEL

Model Type

MODEL_TYPE <STRING>

Model type defines the type of model resource and can be three types — point set, line set and mesh. So
there are three types of block:

MESH

POINT_SET

LINE_SET

Common lists for all model types:

Shading Description List

MODEL_SHADING_DESCRIPTION_LIST {
SHADING_DESCRIPTION 0 {
TEXTURE_LAYER_COUNT <INT>: number_of texture_layers used by this shader list
TEXTURE_COORD_DIMENSION_LIST {
TEXTURE_LAYER O DIMENSION: m

TEXTURE_LAYER number_of_texture_layers-1 DIMENSION: k

b
SHADER_ID <INT>
}

SHADING_DESCRIPTION number_of shaders-1 {
TEXTURE_LAYER_COUNT <INT>: number_of texture_layers used by this shader list
TEXTURE_COORD_DIMENSION_LIST {
TEXTURE_LAYER O DIMENSION: m

TEXTURE_LAYER number_of texture_ layers-1 DIMENSION: Kk

¥
SHADER_ID <INT>

}

This list represents shading descriptions used in the mesh. Each shading description corresponds to one
shader in the shader resource list.

If shading description defines the number of texture layers to be zero only material properties from shader
is used.

<SHADER_ID> - shading index for this shading description. Each shading description corresponds to one
shader list in the shading group of corresponding shading modifier.

m, k- number of dimensions in the texture coordinate vector, can be 1, 2, 3 or 4.
Model Skeleton

MODEL_SKELETON {
BONE 0 {

BONE_NAME <STRING>
PARENT_BONE_NAME <STRING>
BONE_LENGTH <FLOAT>
BONE_DISPLACEMENT <POINT3>
BONE_ORIENTATION <VECTOR4>
BONE_LINK_COUNT <INT>

Page 11

BONE_LINK_LENGTH <VECTOR4>
BONE_START_JOINT <VECTOR4>
BONE_END_JOINT <VECTOR4>
BONE_ROTATION_CONSTRAINTS_MAX <POINT3>
BONE_ROTATION_CONSTRAINTS_MIN <POINT3>

}

BONE number_of bones-1 {

}
}

This list represents bone structure information.
Mesh

Description of <RESOURCE_DATA> for mesh:

MESH {
FACE_COUNT <INT>: number of faces in the face list
MODEL_POSITION_COUNT <INT>: number of positions in the base position list
MODEL_BASE_POSITION_COUNT <INT>: number of base positions in the base position list
MODEL_NORMAL_COUNT <INT>: number of mesh (face + position) normals in the normal list
MODEL_DIFFUSE_COLOR_COUNT <INT>: number of diffuse vertex colors
MODEL_SPECULAR_COLOR_COUNT <INT>: number of specular vertex colors
MODEL_TEXTURE_COORD_COUNT <INT>: number of texture coordinates
MODEL_BONE_COUNT <INT>: number of bone structures
MODEL_SHADING_COUNT <INT>: number of shading descriptions used in the mesh

MODEL_SHADING_DESCRIPTION_LIST {...}
MESH_FACE_POSITION_LIST {...}
MESH_FACE_NORMAL_LIST {...}
MESH_FACE_SHADER_LIST {...}
MESH_FACE_TEXTURE_LAYER LIST {...}
MESH_FACE_DIFFUSE_COLOR_LIST {...}
MESH_FACE_SPECULAR_COLOR_LIST {...}
MODEL_POSITION_LIST {...}
MODEL_NORMAL_LIST {...}
MODEL_DIFFUSE_COLOR_LIST {...}
MODEL_SPECULAR_COLOR_LIST {...}
MODEL_TEXTURE_COORD_LIST {...}
MODEL_SKELETON {...}

}

Descriptions of several mesh lists:

Face Position List

MESH_FACE_POSITION_LIST {
<INT3>

<INT3>
3

This list represents indices of faces into the position list. The size of this list is the number of faces.

Face Normal List

MESH_FACE_NORMAL_LIST {
<INT3>

<INT3>

Page 12

}
This list represents indices of faces into the normal list. The size of this list is the number of faces.

Face Shading List

MESH_FACE_SHADING_LIST {
<INT>

<INT>
3

This list represents array of indices to the shading descriptions in the shading description list used by
mesh faces. The size of this list is the number of faces. Shading ID is used to identify shading description
used by each face in the next list.

Face Texture Coordinate List

MESH_FACE_TEXTURE_COORD_LIST {
FACE 0 {
TEXTURE_LAYER O TEX_COORD: <INT3>

TEXTURE_LAYER n-1 TEX_COORD: <INT3>

}
FACE number_of faces-1 {

TEXTURE_LAYER O TEX_COORD: <INT3>
TEXTURE_LAYER m-1 TEX_COORD: <INT3>

}

This list represents indices of texture coordinates in the texture coordinate array for faces. The size of this
list is the number of faces. n and m are numbers of texture layers for faces.

This list is optional if there are no defined texture layers for faces in this mesh.

Face element can be omitted if there are no texture layers for this face.

Face Diffuse Color List

MESH_FACE_DIFFUSE_COLOR_LIST {
<INT3>

<INT3>
3

This list represents indices of faces into the vertex diffuse color array. The size of this list is the number of
faces.

Face Specular List

MESH_FACE_SPECULAR_COLOR_LIST {
<INT3>

<INT3>
3

This list represents indices of faces into the vertex specular color array. The size of this list is the number
of faces.

Position List

MODEL_POSITION_LIST {
<POINT3>,

Page 13

<POINT3>
3

This list represents coordinates of every vertex.

Normal List

MODEL_NORMAL_LIST {
<POINT3>

<POINT3>
3

This list represents normals. One normal for every face position, 3 normals per face. The size of this list is
the numbers of faces multiply 3.

Diffuse Color List

MODEL_DIFFUSE_COLOR_LIST {
<COLOR4>,

<COLOR4>
3

This list represents vertices diffuse colors.
Specular Color List

MODEL_SPECULAR_COLOR_LIST {
<COLOR4>,

<COLOR4>
3

This list represents vertices specular colors.

Texture Coordinate List

MODEL_TEXTURE_COORD_LIST {
<VECTOR4>

<VECTOR4>
}

This list represents texture coordinates.

Base Position List

MESH_BASE_POSITION_LIST {
<INT>

<INT>
3

This list represents indices of base positions into the position list. The size of this list is the number of
base positions.

Line Set
<RESOURCE_TYPE>: “LINE_SET"

Page 14

Description of <RESOURCE_DATA> for line set:

LINE_SET {
LINE_COUNT <INT>; number of line segments in the line set
MODEL_POSITION_COUNT <INT>: number of positions in the position list
MODEL_NORMAL_COUNT <INT>: number of normals in the normal list
MODEL_DIFFUSE_COLOR_COUNT <INT>: number of diffuse colors
MODEL_SPECULAR_COLOR_COUNT <INT>: number of specular colors
MODEL_TEXTURE_COORD_COUNT <INT>: number of texture coordinates

MODEL_SHADING_DESCRIPTION_LIST {...}
LINE_POSITION_LIST {...}
LINE_NORMAL_LIST {...}
LINE_SHADING_LIST {...}
LINE_TEXTURE_COORD_LIST {...}
LINE_DIFFUSE_COLOR_LIST {...}
LINE_SPECULAR_COLOR_LIST {...}
MODEL_POSITION_LIST {...}
MODEL_NORMAL_LTST {...}
MODEL_DIFFUSE_COLOR_LIST {...}
MODEL_SPECULAR_COLOR_LIST {...}
MODEL_TEXTURE_COORD_LIST {...}

}

Descriptions of several line set lists:

Line Position List

LINE_POSITION_LIST {
<INT2>

<INT2>
3

This list represents indices of lines into the position list. The size of this list is the number of lines.

Line Normal List

LINE_NORMAL_LIST {
<INT2>

<INT2>
3

This list represents indices of lines into the normal list. The size of this list is the number of lines.
Line Shading List

LINE_SHADING_LIST {
<INT>

<INT>
ks

This list represents array of indices to the shading descriptions in the shading description list used by
model lines. The size of this list is the number of lines. Shading ID is used to identify shading description
used by each line in the next list.

Line Texture Coordinate List

LINE_TEXTURE_COORD_LIST {
LINE 0 {

Page 15

TEXTURE_LAYER O TEX_COORD: <INT2>

TEXTURE_LAYER n-1 TEX_COORD: <INT2>

}
LINE number_of faces-1 {

TEXTURE_LAYER O TEX_COORD: <INT2>

TEXTURE_LAYER m-1 TEX_COORD: <INT2>

}

This list represents indices of texture coordinates in the texture coordinate array for line. The size of this
list is the number of lines. n and m are numbers of texture layers for lines.

This list is optional if there are no defined texture layers for lines in this line set.

Line element can be omitted if there are no texture layers for this line.

Line Diffuse Color List

LINE_DIFFUSE_COLOR_LIST {
<INT2>

<INT2>
3

This list represents indices of lines into the vertex diffuse color array. The size of this list is the number of
lines.

Line Specular Color List

LINE_SPECULAR_COLOR_LIST {
<INT2>

<INT2>
3

This list represents indices of lines into the vertex specular color array. The size of this list is the number
of lines.

Position List

MODEL_POSITION_LIST {
<POINT3>,

<POINT3>
¥

This list represents coordinates of every line.

Normal List

MODEL_NORMAL_LIST {
<POINT3>

<POINT3>
}

This list represents normals. One normal for every line position, 2 normals per line. The size of this list is
the numbers of lines multiply 2.

Diffuse Color List
MODEL_DIFFUSE_COLORS LIST {

Page 16

}

<COLOR4>,

<COLOR4>

This list represents vertices diffuse colors.

Specular Color List

MODEL_SPECULAR_COLORS_LIST {

}

<COLOR4>,

<COLOR4>

This list represents vertices specular colors.

Texture Coordinate List

MODEL_TEXTURE_COORD_LIST {

}

<VECTOR4>

<VECTOR4>

This list represents texture coordinates.

Point Set
<RESOURCE_TYPE>: “POINT_SET”

Description of <RESOURCE_DATA> for point set:

POINT_SET {

}

POINT_COUNT <INT>; number of points in the point set
MODEL_POSITION_COUNT <INT>: number of positions in the position list
MODEL_NORMAL_COUNT <INT>: number of normals in the normal list
MODEL_DIFFUSE_COLOR_COUNT <INT>: number of diffuse colors
MODEL_SPECULAR_COLOR_COUNT <INT>: number of specular colors
MODEL_TEXTURE_COORD_COUNT <INT>: number of texture coordinates

MODEL_SHADING_DESCRIPTION_LIST {...}
POINT_POSITION_LIST {...}
POINT_NORMAL_LIST {...}
POINT_SHADING_LIST {...}
POINT_TEXTURE_COORD_LIST {...}
POINT_DIFFUSE_COLOR_LIST {...}
POINT_SPECULAR_COLOR_LIST {...}
MODEL_POSITION_LIST {...}
MODEL_NORMAL_LTST {...}
MODEL_DIFFUSE_COLOR_LIST {...}
MODEL_SPECULAR_COLOR_LIST {...}
MODEL_TEXTURE_COORD_LIST {...}

Descriptions of several point set lists:

Point Position List

POINT_POSITION_LIST {

<INT>

Page 17

<INT>
3

This list represents indices of points into the position list. The size of this list is the number of points.

Point Normal List

POINT_NORMAL_LIST {
<INT>

<INT>
3

This list represents indices of points into the normal list. The size of this list is the number of points.

Point Shading List

POINT_SHADING_LIST {
<INT>

<INT>
ks

This list represents array of indices to the shading descriptions in the shading description list used by
model points. The size of this list is the number of points. Shading ID is used to identify shading
description used by each point in the next list.

Point Texture Coordinate List

POINT_TEXTURE_COORD_LIST {
POINT 0 {
TEXTURE_LAYER O TEX_COORD: <INT>

TEXTURE_LAYER n-1 TEX_COORD: <INT>

}
POINT number_of_ faces-1 {

TEXTURE_LAYER O TEX_COORD: <INT>

TEXTURE_LAYER m-1 TEX_COORD: <INT>

}

This list represents indices of texture coordinates in the texture coordinate array for point. The size of this
list is the number of point. n and m are numbers of texture layers for points.

This list is optional if there are no defined texture layers for points in this point set.

Point element can be omitted if there are no texture layers for this point.

Point Diffuse Color List

POINT_DIFFUSE_COLOR_LIST {
<INT>

<INT>
3

This list represents indices of points into the vertex diffuse color array. The size of this list is the number
of points.

Point Specular Color List

POINT_SPECULAR_COLOR_LIST {
<INT>

Page 18

<INT>
3

This list represents indices of points into the vertex specular color array. The size of this list is the number
of points.

Position List

MODEL_POSITION_LIST {
<POINT3>,

<POINT3>
3

This list represents coordinates of every point.

Normal List

MODEL_NORMAL_LIST {
<POINT3>

<POINT3>
3

This list represents normals. One normal per point. The size of this list is the numbers of points.

Diffuse Color List

MODEL_DIFFUSE_COLORS_LIST {
<COLOR4>,

<COLOR4>
3

This list represents vertices diffuse colors.
Specular Color List

MODEL_SPECULAR_COLORS_LIST {
<COLOR4>,

<COLOR4>
3

This list represents vertices specular colors.

Texture Coordinate List

MODEL_TEXTURE_COORD_ LIST {
<VECTOR4>

<VECTOR4>
3

This list represents texture coordinates.

Lit Texture Shader Resource
<RESOURCE_TYPE>: SHADER

Page 19

The Shader contains information needed to determine the appearance of a surface during rendering. The
Shader includes references to Material Resources and Texture Resources and how to combine those
resources when rendering.

Description of <RESOURCE_DATA> for Shader:

ATTRIBUTE_LIGHTING_ENABLED <BOOL>: (optional)
ATTRIBUTE_ALPHA TEST_ENABLED <BOOL>: (optional)
ATTRIBUTE_USE_VERTEX_COLOR <BOOL>: (optional)
ATTRIBUTE_USE_FAST_SPECULAR <BOOL>: (optional)
SHADER_ALPHA TEST_REFERENCE <FLOAT>: (optional)
SHADER_ALPHA TEST_FUNCTION <STRING>: (optional)
SHADER_COLOR_BLEND_FUNCTION <STRING>: (optional)
SHADER_MATERIAL_NAME <STRING>
SHADER_ACTIVE_TEXTURE_COUNT <INT>
SHADER_TEXTURE_LAYER_LIST {

TEXTURE_LAYER m < max_number_of texture_ layers {
TEXTURE_LAYER_INTENSITY <FLOAT>: (optional, 1.0 by default)
TEXTURE_LAYER_BLEND_FUNCTION <STRING>: (opt., MULTIPLY by default)
TEXTURE_LAYER_BLEND_SOURCE <STRING>: (opt., CONSTANT by default)
TEXTURE_LAYER _BLEND_CONSTANT <FLOAT>: (opt., 0.5 by default)
TEXTURE_LAYER_MODE <STRING>: (optional, TM_NONE by default)
TEXTURE_LAYER_ALPHA ENABLED <BOOL>: (optional, FALSE by default)
TEXTURE_NAME <STRING>

}

TEXTURE_LAYER n < max_number_of texture layers {
TEXTURE_LAYER_INTENSITY <FLOAT>: (optional, 1.0 by default)
TEXTURE_LAYER_BLEND_FUNCTION <STRING>: (opt., MULTIPLY by default)
TEXTURE_LAYER_BLEND_SOURCE <STRING>: (opt., CONSTANT by default)
TEXTURE_LAYER BLEND_CONSTANT <FLOAT>: (opt., 0.5 by default)
TEXTURE_LAYER_MODE <STRING>: (optional, TM_NONE by default)
TEXTURE_LAYER_ALPHA ENABLED <BOOL>: (optional, FALSE by default)
TEXTURE_NAME <STRING>

}

SHADER_ACTIVE_TEXTURE_COUNT - number of texture layers used by this shader, up to 8.

You can skip specific items in the Shader Texture Layer List. For example you can describe only 2 and 5
texture layers if you want only 2 and 5 texture layers to be active (enabled).

TEXTURE_ LAYER _INTENSITY - a scale factor applied to the color components of the texture.

TEXTURE_ LAYER_BLEND_FUNCTION - determines how the current texture layer is combined with the
result from previous layers. Can be “ADD”, “MULTIPLY", “REPLACE", “BLEND".

TEXTURE_ LAYER_BLEND_SOURCE - indicates whether the blending operation combines the current
layer with the result from previous layers using a blending constant or the alpha value of each pixel. Can
be “ALPHA”, “CONSTANT".

0 — Alpha value of each pixel
1 - Blending constant.

TEXTURE_ LAYER_BLEND_CONSTANT - used when combining the results of texture layers.
A shader uses a Material to determine how surfaces will appear when rendered. A material associated
with this shader determines how the shader appears when lit. The Material contains information defining

how a material interacts with light in a scene.

Multi-material is supported. Nested sub-materials are not allowed.
Standard bitmaps and 2D procedural maps are supported.

Page 20

Material Resource
<RESOURCE_TYPE>: MATERIAL

Description of <RESOURCE_DATA> for Material:

MATERIAL {
ATTRIBUTE_AMBIENT_ENABLED <BOOL>: (optional)
ATTRIBUTE_DIFFUSE_ENABLED <BOOL>: (optional)
ATTRIBUTE_SPECULAR_ENABLED <BOOL>: (optional)
ATTRIBUTE_EMISSIVE_ENABLED <BOOL>: (optional)
ATTRIBUTE_REFLECTIVITY_ENABLED <BOOL>: (optional)
ATTRIBUTE_OPACITY_ENABLED <BOOL>: (optional)
MATERIAL_AMBIENT <COLOR4>: ambient color;
MATERIAL_DIFFUSE <COLOR4>: diffuse color;
MATERIAL_SPECULAR <COLOR4>: specular color;
MATERIAL_EMISSIVE <COLOR4>: emissive (self illumination) color;
MATERIAL_REFLECTIVITY <FLOAT>: reflectivity (shininess) parameter;
MATERIAL_OPACITY <FLOAT>: opacity;

}

All attributes set to “TRUE” by default. If you want to switch off one of them you should specify it as
“FALSE”

Texture Resource
<RESOURCE_TYPE>: TEXTURE

Description of <RESOURCE_DATA> for Texture:

IDTF_TEXTURE_HEIGHT <INT>: (optional)

IDTF_TEXTURE_WIDTH <INT>: (optional)

TEXTURE_IMAGE_TYPE <STRING>: (optional)

TEXTURE_IMAGE_COUNT <INT>: (optional)

IMAGE_FORMAT_LIST {: (optional)
IMAGE_FORMAT 0 {

<TEXTURE_IMAGE_FORMAT>

s

IMAGE_FORMAT number_of_image-1 {
<TEXTURE_ IMAGE_FORMAT>
}
}

TEXTURE_PATH <STRING>: texture file name

TEXTURE_IMAGE_TYPE can be used to define the image type of texture being written to U3D file.

Possible values of this field are follows:
“ALPHA”

“RGB”

“RGBA”

“LUMINANCE”
“LUMINANCE_AND_ALPHA"

If this field is not defined the following default settings are used:
“RGB” for 3 channel texture

Description of <TEXTURE_ IMAGE_FORMAT>:
COMPRESSION_TYPE <STRING>

ALPHA_CHANNEL <BOOL>

BLUE_CHANNEL <BOOL>

Page 21

GREEN_CHANNEL <BOOL>
RED_CHANNEL <BOOL>
LUMINANCE <BOOL>
EXTERNAL_REFERENCE <BOOL>
URL_COUNT <INT>
URL_LIST {

URL O <STRING>

URL url_count-1 <STRING>
}

Channel attributes (alpha, blue, red, green channels and luminance) can be used only for channels which

are composed in this image.
If channel attribute is not defined it is considered as “FALSE”.

If TEXTURE_IMAGE_TYPE is not defined the default settings are used for IMAGE_FORMAT (see

below).
Possible values of COMPRESSION_TYPE:

“JPEG24” - color
“JPEGS8” - greyscale
“PNG”

Default settings for “RGB":

TEXTURE_IMAGE_COUNT 1
IMAGE_FORMAT_LIST {

IMAGE_FORMAT 0 {
COMPRESSION_TYPE “JPEG24”
BLUE_CHANNEL “TRUE”
GREEN_CHANNEL “TRUE”
RED_CHANNEL “TRUE”

}

If URL_COUNT and URL_LIST presents in any image format block then TEXTURE_PATH should not

present and texture is considered as external.

Motion Resource
<RESOURCE_TYPE>: MOTION

Description of <RESOURCE_DATA> for Motion:

MOTION_TRACK_COUNT <INT>: number_of motion_tracks
MOTION_TRACK 0 {
MOTION_TRACK NAME <STRING>: name of motion track
MOTION_TRACK_TIME_COUNT <INT>: number_of time_samples for this motion track
KEY_FRAME 0 {
KEY_FRAME_TIME <FLOAT>; time in seconds from beginning of animation;
KEY_FRAME_DISPLACEMENT <POINT3>
KEY_FRAME_ROTATION <QUAT>
KEY_FRAME_SCALE <POINT3>

}

KEY_FRAME number_of time_samples-1 {
KEY_FRAME_TIME <FLOAT>: time in seconds from beginning of animation
KEY_FRAME_DISPLACEMENT <POINT3>
KEY_FRAME_ROTATION <QUAT>
KEY_FRAME_SCALE <POINT3>

Page 22

MOTION_TRACK number_of motion_tracks-1 {
<MOTION_TRACK_KEY_FRAMES>
}

The motion track has one Key Frame for each time sample.

KEY_FRAME_DISPLACEMENT - translation of the start of the bone from the end of its parent bone. For a
root bone or for a node, Displacement is the translation from the origin of the local coordinate space.

KEY_FRAME_ROTATION - the change in orientation of the bone relative to the parent bone. Rotation is
expressed as a quaternion with the real part first.

KEY_FRAME_SCALE - the scaling component of the transformation of the bone relative to its parent bone.

Modifiers

Modifier blocks contain the information necessary to create certain modifiers that can be added to a
modifier chain. It is assumed that every modifier is attached at the end of modifier chain.

MODIFIER <MODIFIER_TYPE> {
MODIFIER_NAME <STRING>
MODIFIER_CHAIN_TYPE <STRING>
<MODIFIER_DATA>
<META_DATA>

}

MODIFIER_TYPE is a string specified type of modifier. Possible values:
“ANIMATION”

“SHADING”

“BONE_WEIGHT”

“CLOD”

“SUBDIV”

“GLYPH”

MODIFIER_CHAIN_TYPE is a string specified type of modifier chain. Possible values:
“NODE”
“MODEL"

Shading Modifier

The Shading Modifier block describes the shading group that is used in the drawing of a renderable
group. The shading modifier replaces the shading group associated with a renderable group.

Description of <MODIFIER_DATA> for shading modifier:

SHADER_LIST_COUNT <INT>: number of shader lists in the shading group
SHADING_GROUP {
SHADER_LIST 0 {
SHADER_COUNT <INT>: number of shaders in the shader list.
SHADER_NAME_LIST {
SHADER O NAME: <STRING>: refers to a shader in the shader resource palette

SHADER shader_count-1 NAME: <STRING>

}

SHADER_LIST shader_list_count-1 {
SHADER_COUNT <INT>
SHADER_NAME_LIST {

SHADER O NAME: <STRING>

SHADER shader_count-1 NAME: <STRING>

Page 23

}

Animation Modifier

The Animation Modifier block describes parameters for animating a node or a renderable group. These
parameters indicate which motion resources should be used and how they should be applied. When
animating a node, the animation modifier changes the transforms for the node. When animating a
renderable group, the animation modifier uses a skeleton defined by the generator and bone weights
defined by a bone weight modifier to change the positions and normals in the renderable group

Description of <MODIFIER_DATA> for shading modifier:

ATTRIBUTE_ANIMATION_PLAYING <BOOL>
ATTRIBUTE_ROOT_BONE_LOCKED <BOOL>
ATTRIBUTE_SINGLE_TRACK <BOOL>
ATTRIBUTE_AUTO_BLEND <BOOL>
TIME_SCALE <FLOAT>
BLEND_TIME <FLOAT>
MOTION_COUNT <INT>
MOTION_INFO_LIST {
MOTION_INFO O {
MOTION_NAME <STRING>
ATTRIBUTE_LOOP <BOOL>
ATTRIBUTE_SYNC <BOOL>
TIME_OFFSET <FLOAT>
TIME_SCALE <FLOAT>

}

MOTION_INFO motion_count-1 {
MOTION_NAME <STRING>
ATTRIBUTE_LOOP <BOOL>
ATTRIBUTE_SYNC <BOOL>
TIME_OFFSET <FLOAT>
TIME_SCALE <FLOAT>

}

ATTRIBUTE_ANIMATION_PLAYING - Animation should start when possible.

ATTRIBUTE_ROOT_BONE_LOCKED - The node’s root bone’s transform does not change as a result of the
animation.

ATTRIBUTE_SINGLE_TRACK - Playing a single track.

ATTRIBUTE_AUTO_BLEND - The bones’ transforms should transition smoothly from one motion to the
next during the animation.

TIME_SCALE - Time Scale is a scaling value for the times of the motions.

MOTION_COUNT - Number of motion resources referenced by this modifier. If the Motion Count is
zero, the Animation Modifier will use the default motion.

MOTION_NAME - String that identifies a motion resource.
ATTRIBUTE_LOOP - Determines whether this motion repeats.

ATTRIBUTE_SYNC - Determines if all of the motion resources playing concurrently should end at
the same time.

TIME_OFFSET - Number of milliseconds to offset the start time of the motion.

TIME_SCALE - Scaling factor for the time of this motion resource for this animation modifier.

Page 24

Bone Weight Modifier

The Bone Weight Modifier block describes a set of bone weights that can be added to a modifier chain.
The animation modifier uses the bone weights in combination with the skeleton to animate the positions in
a renderable group (mesh, point set, or line set). The normals are also changed by the animation
modifier.

MODIFIER_ATTRIBUTES <STRING>: “MESH” or “LINE_SET” or “POINT_SET”"
INVERSE_QUANT <FLOAT>
POSITION_COUNT <INT>
POSITION_BONE_WEIGHT_LIST {
BONE_WEIHT_LIST 0 {
BONE_WEIGHT_COUNT <INT>: number_of bones which have influence at this position
BONE_INDEX_LIST {
0 <INT>

bone_weight _count-1 <INT>

}
BONE_WEIGHT_LIST {

0 <INT>
bone_weight _count-2 <INT>
}
}
BONE_WEIHT_LIST number_of_positions-1 {
}

}

Position weights specify how strongly each vertex is influenced by each bone in the skeleton.

Position Bone Weight List indicates which bones have a non-zero influence at this position. The
reconstructed bone weights at this position should sum to +1.0. The bone weights cannot be negative.

Bone Index List is a list of the indices of the bone in the skeleton that has influence at this position. Bone
Index is present only if Bone Weight Count is greater than zero.

Bone Weight List is a list of the quantized bone weight values. Quantized Bone Weight is present only if
Bone Weight Count is greater than one.

For other than the last bone weight value, the reconstructed bone weight value is calculated as:
(reconstructed bone weight) = (Quantized Bone Weight) * (Bone Weight Inverse Quant)

The last bone weight value is reconstructed by subtracting the sum of all the other reconstructed bone
weight values from +1.0. The sum of all the bone weights at this position will be +1.0.

CLOD Modifier

The CLOD Modifier adjusts the level of detail in the renderable meshes in the data packet. The CLOD
Modifier block contains parameters for how the level of detail should be adjusted.

Description of <MODIFIER_DATA> for CLOD modifier:
ATTRIBUTE_AUTO_LOD_CONTROL <BOOL>

LOD_BIAS <FLOAT>
CLOD_LEVEL <FLOAT>

LOD_BIAS - Describes screen space metric calculation.
CLOD_LEVEL - The range for CLOD Modifier Level is 0.0 to 1.0.

The CLOD Modifier adjusts the resolution of the renderable meshes.

Page 25

The target resolution is determined by multiplying the CLOD Modifier Level by the maximum
resolution of the author mesh. If the target resolution is less than the minimum resolution, then the
resolution will be adjusted to the minimum resolution.

If the automatic LOD control is enabled, then the automatic LOD control overrides the CLOD Modifier
Level specified in this block.

Subdivision Modifier

The Subdivision Modifier increases the resolution of a shape by dividing polygons into smaller
polygons. The Subdivision Modifier block contains parameters that control the performance and
appearance of the output of the subdivision algorithm.

Description of <MODIFIER_DATA> for Subdivision modifier:

ATTRIBUTE_ENABLED <BOOL>: subdivision modifier is enabled or not
ATTRIBUTE_ADAPTIVE <BOOL>: subdivision modifier should use adaptive subdivision or not
DEPTH <INT>: maximum number of levels of subdivision

TENSION <FLOAT>: tension value used for adaptive subdivision

ERROR <FLOAT>: value of the screen space error metric.

Glyph Modifier

The Glyph Modifier contains information used to create a 2D shape. The shape is defined by a number of
control points and parameters that define how to connect the points. The shape consists of a sequence of
individual glyphs called a glyph string. Each glyph in the glyph string is defined by a sequence of drawing

commands.

Description of <MODIFIER_DATA> for Glyph modifier:

ATTRIBUTE_BILLBOARD <BOOL>
GLYPH_COMMAND_COUNT <INT>
GLYPH_COMMAND_LIST {
GLYPH_COMMAND 0 {
TYPE <STRING>
<COMMAND_PARAMETERS>

}

GLYPH_COMMAND command_count-1 {
TYPE <STRING>
<COMMAND_PARAMETERS>

}
}
GLYPH_TM {
<TM_DATA>
3

Possible command’s type which can be defined by TYPE:

START_GLYPH_STRING Start a sequence of glyph symbols.

END_GLYPH_STRING End a sequence of glyph symbols.

START_GLYPH Start a glyph.

END_GLYPH End the current glyph definition.

START_PATH Start a new path to be drawn.

END_PATH End the current path.

MOVE_TO Move the current drawing position.

LINE_TO Draw a line from the current drawing position to the new position.
CURVE_TO Draw a curve from the current drawing position to the new position. The

curve shape is determined by two control points.

END_GLYPH, MOVE_TO, LINE_TO and CURVE_TO have additional parameters. Other glyph
commands do not have any parameters.

Page 26

END_GLYPH parameters describe the horizontal and vertical offsets between the starting point for this
glyph and the starting point for next glyph.

END_GLYPH_OFFSET_X <FLOAT>
END_GLYPH_OFFSET_Y <FLOAT>

MOVE_TO parameters describe the new horizontal and vertical positions of the active point.

MOVE_TO X <FLOAT>
MOVE_TO_Y <FLOAT>

LINE_TO parameters describe the horizontal and vertical positions of the end point of the line.

LINE_TO X <FLOAT>
LINE_TO_Y <FLOAT>

CURVE_TO parameters describe the horizontal and vertical positions of the first, the second control and
the end points of the curve.

CONTROL1_X <FLOAT>
CONTROL1_Y <FLOAT>
CONTROL2_X <FLOAT>
CONTROL2_Y <FLOAT>
ENDPOINT_X <FLOAT>
ENDPOINT_Y <FLOAT>

<TM_DATA>: transform matrix which make up the transform that is applied to the glyph modifier after
drawing to place it in the 3D world. This is a relative transform when used as a modifier attached to a
node.

GLYPH_TM {
<TM_COLUMNO>
<TM_COLUMN1>
<TM_COLUMN2>
<TM_COLUMN3>

}

<TM_COLUMN<N>>: Nth column of TM. It must be 4 floats. TM has 4 rows and 4 columns of floats.

Page 27

	
	Basic Data Types
	File Structure
	Meta-Data
	File Header
	Scene Data
	File Reference
	Nodes
	Group
	Light
	View
	Model

	Resources
	Light Resource
	View Resource
	Model Resource
	Model Type
	Shading Description List
	Model Skeleton

	Mesh
	Face Position List
	Face Normal List
	Face Shading List
	Face Texture Coordinate List
	Face Diffuse Color List
	Face Specular List
	Position List
	Normal List
	Diffuse Color List
	Specular Color List
	Texture Coordinate List
	Base Position List

	Line Set
	Line Position List
	Line Normal List
	Line Shading List
	Line Texture Coordinate List
	Line Diffuse Color List
	Line Specular Color List
	Position List
	Normal List
	Diffuse Color List
	Specular Color List
	Texture Coordinate List

	Point Set
	Point Position List
	Point Normal List
	Point Shading List
	Point Texture Coordinate List
	Point Diffuse Color List
	Point Specular Color List
	Position List
	Normal List
	Diffuse Color List
	Specular Color List
	Texture Coordinate List

	Lit Texture Shader Resource
	Material Resource
	Texture Resource
	Motion Resource

	Modifiers
	Shading Modifier
	Animation Modifier
	Bone Weight Modifier
	CLOD Modifier
	Subdivision Modifier
	Glyph Modifier

